3.323 \(\int \frac {(d \sec (e+f x))^{3/2}}{(b \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=97 \[ -\frac {2 d^2 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{b^2 f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}-\frac {2 d^2}{b f \sqrt {b \tan (e+f x)} \sqrt {d \sec (e+f x)}} \]

[Out]

-2*d^2/b/f/(d*sec(f*x+e))^(1/2)/(b*tan(f*x+e))^(1/2)+2*d^2*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*P
i+1/2*f*x)*EllipticE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2))*(b*tan(f*x+e))^(1/2)/b^2/f/(d*sec(f*x+e))^(1/2)/sin(f*
x+e)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2608, 2616, 2640, 2639} \[ -\frac {2 d^2 E\left (\left .\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{b^2 f \sqrt {\sin (e+f x)} \sqrt {d \sec (e+f x)}}-\frac {2 d^2}{b f \sqrt {b \tan (e+f x)} \sqrt {d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(d*Sec[e + f*x])^(3/2)/(b*Tan[e + f*x])^(3/2),x]

[Out]

(-2*d^2)/(b*f*Sqrt[d*Sec[e + f*x]]*Sqrt[b*Tan[e + f*x]]) - (2*d^2*EllipticE[(e - Pi/2 + f*x)/2, 2]*Sqrt[b*Tan[
e + f*x]])/(b^2*f*Sqrt[d*Sec[e + f*x]]*Sqrt[Sin[e + f*x]])

Rule 2608

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a^2*(a*Sec[
e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 1))/(b*f*(n + 1)), x] - Dist[(a^2*(m - 2))/(b^2*(n + 1)), Int[(a*Sec[e
 + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && (GtQ[m, 1] || (Eq
Q[m, 1] && EqQ[n, -3/2])) && IntegersQ[2*m, 2*n]

Rule 2616

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(a^(m + n)*(b
*Tan[e + f*x])^n)/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n), Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x]
 /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rubi steps

\begin {align*} \int \frac {(d \sec (e+f x))^{3/2}}{(b \tan (e+f x))^{3/2}} \, dx &=-\frac {2 d^2}{b f \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)}}-\frac {d^2 \int \frac {\sqrt {b \tan (e+f x)}}{\sqrt {d \sec (e+f x)}} \, dx}{b^2}\\ &=-\frac {2 d^2}{b f \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)}}-\frac {\left (d^2 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {b \sin (e+f x)} \, dx}{b^2 \sqrt {d \sec (e+f x)} \sqrt {b \sin (e+f x)}}\\ &=-\frac {2 d^2}{b f \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)}}-\frac {\left (d^2 \sqrt {b \tan (e+f x)}\right ) \int \sqrt {\sin (e+f x)} \, dx}{b^2 \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}\\ &=-\frac {2 d^2}{b f \sqrt {d \sec (e+f x)} \sqrt {b \tan (e+f x)}}-\frac {2 d^2 E\left (\left .\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )\right |2\right ) \sqrt {b \tan (e+f x)}}{b^2 f \sqrt {d \sec (e+f x)} \sqrt {\sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.63, size = 70, normalized size = 0.72 \[ \frac {2 d^2 \left (\sqrt [4]{-\tan ^2(e+f x)} \, _2F_1\left (-\frac {1}{4},\frac {1}{4};\frac {3}{4};\sec ^2(e+f x)\right )-1\right )}{b f \sqrt {b \tan (e+f x)} \sqrt {d \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Sec[e + f*x])^(3/2)/(b*Tan[e + f*x])^(3/2),x]

[Out]

(2*d^2*(-1 + Hypergeometric2F1[-1/4, 1/4, 3/4, Sec[e + f*x]^2]*(-Tan[e + f*x]^2)^(1/4)))/(b*f*Sqrt[d*Sec[e + f
*x]]*Sqrt[b*Tan[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.76, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {d \sec \left (f x + e\right )} \sqrt {b \tan \left (f x + e\right )} d \sec \left (f x + e\right )}{b^{2} \tan \left (f x + e\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(3/2)/(b*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*sec(f*x + e))*sqrt(b*tan(f*x + e))*d*sec(f*x + e)/(b^2*tan(f*x + e)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}}}{\left (b \tan \left (f x + e\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(3/2)/(b*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((d*sec(f*x + e))^(3/2)/(b*tan(f*x + e))^(3/2), x)

________________________________________________________________________________________

maple [C]  time = 0.59, size = 535, normalized size = 5.52 \[ -\frac {\left (-2 \cos \left (f x +e \right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}+\cos \left (f x +e \right ) \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}-2 \sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticE \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )+\sqrt {-\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}}\, \sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \sqrt {-\frac {i \cos \left (f x +e \right )-i-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}\, \EllipticF \left (\sqrt {\frac {i \cos \left (f x +e \right )-i+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}}, \frac {\sqrt {2}}{2}\right )+\sqrt {2}\right ) \left (\frac {d}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}} \sin \left (f x +e \right ) \sqrt {2}}{f \left (\frac {b \sin \left (f x +e \right )}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*sec(f*x+e))^(3/2)/(b*tan(f*x+e))^(3/2),x)

[Out]

-1/f*(-2*cos(f*x+e)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(
1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/
2)+cos(f*x+e)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(1/2)*E
llipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)-2*(
-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+
e))/sin(f*x+e))^(1/2)*EllipticE(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))+(-I*(-1+cos(f*x+e)
)/sin(f*x+e))^(1/2)*((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2)*(-(I*cos(f*x+e)-I-sin(f*x+e))/sin(f*x+e))^(
1/2)*EllipticF(((I*cos(f*x+e)-I+sin(f*x+e))/sin(f*x+e))^(1/2),1/2*2^(1/2))+2^(1/2))*(d/cos(f*x+e))^(3/2)*sin(f
*x+e)/(b*sin(f*x+e)/cos(f*x+e))^(3/2)*2^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d \sec \left (f x + e\right )\right )^{\frac {3}{2}}}{\left (b \tan \left (f x + e\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))^(3/2)/(b*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*sec(f*x + e))^(3/2)/(b*tan(f*x + e))^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (\frac {d}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{{\left (b\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d/cos(e + f*x))^(3/2)/(b*tan(e + f*x))^(3/2),x)

[Out]

int((d/cos(e + f*x))^(3/2)/(b*tan(e + f*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (d \sec {\left (e + f x \right )}\right )^{\frac {3}{2}}}{\left (b \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*sec(f*x+e))**(3/2)/(b*tan(f*x+e))**(3/2),x)

[Out]

Integral((d*sec(e + f*x))**(3/2)/(b*tan(e + f*x))**(3/2), x)

________________________________________________________________________________________